18735 measured reflections

 $R_{\rm int} = 0.071$

5283 independent reflections

2688 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,3-Bis(3-phenylpropyl)benzimidazolium bromide monohydrate

Mehmet Akkurt,^a* Selvi Karaca,^a Ülkü Yılmaz,^b Hasan Küçükbay^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kavseri, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 18 September 2008; accepted 22 September 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.010 Å; R factor = 0.065; wR factor = 0.172; data-to-parameter ratio = 19.7.

In the title compound, $C_{25}H_{27}N_2^+ \cdot Br^- \cdot H_2O$, the benzimidazole unit is essentially planar, with a maximum deviation of 0.020 (6) Å. The benzimidazole unit makes dihedral angles of 83.6 (3) and 81.0 (3) $^{\circ}$ with the two terminal phenyl rings. The dihedral angle between the phenyl rings is $58.5 (4)^{\circ}$. In the crystal structure, there are C-H···O hydrogen bonds, a C- $H \cdots \pi$ interaction between a phenyl H atom and the phenyl ring of a neighbouring molecule, and a π - π interaction [3.512 (3) Å] between the centroids of the five-membered ring and the benzene ring of the benzimidazole unit of an adjacent molecule.

Related literature

For general background, see: Sakai et al. (1989); Kücükbay et al. (2001, 2003, 2004). For a similar structure, see: Akkurt et al. (2005). For related structures, see: Akkurt et al. (2004, 2007); Karaca et al. (2005); Pinar et al. (2006); Yildirim et al. (2005).

Experimental

Crystal data

$C_{25}H_{27}N_2^+ \cdot Br^- \cdot H_2O$	$V = 2316.1 (2) \text{ Å}^3$
$M_r = 453.40$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.1933 (8) Å	$\mu = 1.79 \text{ mm}^{-1}$
b = 11.4594 (3) Å	T = 295 (2) K
c = 18.3014 (10) Å	$0.71 \times 0.63 \times 0.54 \text{ mm}$
$\beta = 128.916 \ (3)^{\circ}$	

Data collection

Stoe IPDS II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.363, T_{\max} = 0.444$

Refinement

$R[F^{2} > 2\sigma(F^{2})] = 0.065$ wR(F^{2}) = 0.172 S = 0.99	H atoms treated by a mixture of independent and constrained
5283 reflections 268 parameters	$\Delta \rho_{\text{max}} = 0.47 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.23 \text{ e } \text{\AA}^{-3}$
3 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots A$ $C7-H7\cdots O1$ 0.93 2.50 3.257 (10) 139 $C17-H17A\cdots O1$ 0.97 2.38 3.236 (13) 148 $C24-H24\cdots Cg1^i$ 0.93 2.84 3.771 (14) 176					
$C7-H7O1$ 0.932.503.257 (10)139 $C17-H17AO1$ 0.972.383.236 (13)148 $C24-H24Cg1^i$ 0.932.843.771 (14)176	$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$C7 - H7 \cdots O1$ $C17 - H17A \cdots O1$ $C24 - H24 \cdots Cg1^{i}$	0.93 0.97 0.93	2.50 2.38 2.84	3.257 (10) 3.236 (13) 3.771 (14)	139 148 176

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$. Cg1 is the centroid of the C11–C16 phenyl ring.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund). HK and ÜY thank İnönü University Research Fund (Directed project BAPB-2008/60) for financial support of this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2337).

References

- Akkurt, M., Karaca, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2452-o2454.
- Akkurt, M., Öztürk, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2004). Acta Cryst. E60, o219-o221.
- Akkurt, M., Pınar, Ş., Yılmaz, Ü., Küçükbay, H. & Büyükgüngör, O. (2007). Acta Cryst. E63, 0379-0381.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Karaca, S., Akkurt, M., Yılmaz, U., Küçükbay, H. & Büyükgüngör, O. (2005). Acta Cryst. E61, 02128–02130.
- Küçükbay, H., Durmaz, R., Güven, M. & Günal, S. (2001). Arzneim. Forsch. Drug. Res. 51, 420-424.
- Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug. Res. 54, 64–68.
- Küçükbay, H., Durmaz, H., Orhan, E. & Günal, S. (2003). Farmaco, 58, 431–437.
- Pınar, Ş., Akkurt, M., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, 02223–02225.
- Sakai, T., Hamada, T., Awata, N. & Watanabe, J. (1989). *Pharmacobiol. Dyn.* **12**, 530–536.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Yıldırım, S. O., Akkurt, M., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2038–o2039.

Acta Cryst. (2008). E64, o2019-o2020 [doi:10.1107/S1600536808030432]

1,3-Bis(3-phenylpropyl)benzimidazolium bromide monohydrate

M. Akkurt, S. Karaca, Ü. Yilmaz, H. Küçükbay and O. Büyükgüngör

Comment

Benzimidazole and related heterocyclic compounds have been extensively investigated because of their versatile pharmacological activity. They are also present in various naturally occurring drugs such as omeprazole, astemizole andemedastine difumarate (Sakai *et al.*, 1989). Substituted benzimidazole moieties are estabilished pharmacophores in parasitic chemotheraphy. In some previous papers (Küçükbay *et al.*, 2001, 2003, 2004), we reported the synthesis and antimicrobial activity of some benzimidazole derivatives. The objective of this study was to elucidate the crystal structure of the title compound, (I).

In the title molecule (I) (Fig. 1), the values of the geometric parameters are comparable with those of previously reported structures (Akkurt *et al.*, 2004, 2005, 2007; Pınar *et al.*, 2006; Yıldırım *et al.*, 2005; Karaca *et al.*, 2005). The benzimidazole unit (N1/N2/C1–C7) is essentially planar, with a maximum deviation of 0.020 (6) Å for C7 from the least-squares plane defined by the nine constituent atoms. The benzimidazole unit makes the dihedral angles of 83.6 (3) and 81.0 (3)° with the two terminal phenyl rings (C11–C16) and (C20–C25), respectively. The dihedral angle between the phenyl rings is 58.5 (4)°.

Molecular conformation is stabilized by intramolecular C—H···O hydrogen bonding interactions. The molecular packing (Fig. 2) is stabilized by a C—H··· π interaction between a phenyl H atom and the phenyl ring of neighbouring molecules, with a C24—H24···Cg1ⁱⁱ separation of 2.84 Å [Table 1; Cg1 is the C11–C16 phenyl ring, symmetry code: (ii) x, -y + 1/2, z + 1/2]. In the crystal packing, there is also a π - π interaction with a distance of 3.512 (3) Å between the centroids of the five-membered ring (N1/N2/C1/C6/C7) (centroid Cg2) and the benzene ring (C1–C6) (centroid Cg3) of the benzimidazole unit of the adjacent molecule.

Experimental

A solution of 1-(3-phenylpropyl)benzimidazole (4.20 g,17.80 mmol) and Ph(CH₂)₃Br (2.70 ml, 17.85 mmol) was refluxed in DMF for 4 h. The mixture was then cooled and the volatiles were removed from the filtrate *in vacuo*. The residue obtained was then crytallized from EtOH/Et₂O(1:5) (yield 6.50 g, 84%; m.p. 376–377 K). ¹H-NMR (DMSO-d₆): δ (p.p.m.) 2.26 (*p*, CH₂, 4H), 2.73 (*t*, CH₂—Ar, 4H), 4.55 (*t*, CH₂—N, 4H), 7.14–8.13 (*m*, Ar—H, 14H), 9.99 (s, >CH, 1H). ¹³C-NMR (DMSO-d₆): δ 30.5, 32.4, 47.0, 114.2, 126.5, 126.9, 128.7, 131.6, 141.4, 142.7. Analysis calculated for C₂₅H₂₉N₂OBr: C 66.23, H 6.40, N 6.18%; found: C 65.99, H 6.13, N 6.10%.

Refinement

Water H atoms were found in a difference Fourier map and distance restraints [O—H = 0.84 (9) and H···H = 1.37 (9) Å] were used to obtain reasonable values for O–H distances and H—O—H angles, with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned to the ideal geometric positions and refined with a riding model, with C—H = 0.93 and 0.97 Å, and with $U_{iso} = 1.2U_{eq}(C)$.

Figures

Fig. 1. The title molecule (I), with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2. The crystal packing diagram of (I), down the b axis. Dashed lines indicate hydrogen contacts. H atoms not involved in hydrogen bonding have been omitted for clarity.

1,3-Bis(3-phenylpropyl)benzimidazolium bromide monohydrate

Crystal data

$C_{25}H_{27}N_2^+ \cdot Br^- \cdot H_2O$	$F_{000} = 944$
$M_r = 453.40$	$D_{\rm x} = 1.300 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 13886 reflections
<i>a</i> = 14.1933 (8) Å	$\theta = 1.4 - 28.0^{\circ}$
b = 11.4594 (3) Å	$\mu = 1.79 \text{ mm}^{-1}$
c = 18.3014 (10) Å	T = 295 (2) K
$\beta = 128.916 \ (3)^{\circ}$	Block, colourless
$V = 2316.1 (2) \text{ Å}^3$	$0.71 \times 0.63 \times 0.54 \text{ mm}$
Z = 4	

Data collection

Stoe IPDS II	5283 independent reflections
diffractometer	3205 independent reflections
Monochromator: plane graphite	2688 reflections with $I > 2\sigma(I)$

Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.071$
T = 295(2) K	$\theta_{max} = 27.6^{\circ}$
ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: integration (<i>X-RED32</i> ; Stoe & Cie, 2002)	$h = -18 \rightarrow 18$
$T_{\min} = 0.363, T_{\max} = 0.444$	$k = -13 \rightarrow 14$
18735 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.065$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.173$	$w = 1/[\sigma^2(F_o^2) + (0.0827P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} < 0.001$
5283 reflections	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$
268 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
3 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direc methods

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	-0.1093 (3)	0.1691 (3)	0.9193 (2)	0.0541 (10)
N2	-0.1505 (3)	0.0103 (3)	0.8391 (2)	0.0539 (11)
C1	-0.1415 (3)	0.0860 (3)	0.9554 (3)	0.0514 (11)
C2	-0.1469 (4)	0.0912 (4)	1.0285 (3)	0.0622 (14)
C3	-0.1784 (4)	-0.0099 (4)	1.0477 (3)	0.0753 (17)
C4	-0.2034 (4)	-0.1121 (4)	0.9973 (3)	0.0742 (17)
C5	-0.1995 (4)	-0.1173 (3)	0.9243 (3)	0.0645 (16)
C6	-0.1673 (3)	-0.0157 (3)	0.9049 (3)	0.0505 (11)
C7	-0.1159 (4)	0.1196 (3)	0.8509 (3)	0.0587 (12)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C8	-0.1677 (4)	-0.0701 (4)	0.7691 (3)	0.0700 (17)
C9	-0.3031 (5)	-0.0933 (4)	0.6894 (3)	0.0853 (19)
C10	-0.3233 (6)	-0.1767 (6)	0.6209 (4)	0.105 (2)
C11	-0.4522 (5)	-0.2161 (5)	0.5455 (4)	0.0905 (19)
C12	-0.5522 (5)	-0.1513 (5)	0.5160 (4)	0.102 (2)
C13	-0.6656 (6)	-0.1874 (7)	0.4419 (4)	0.107 (3)
C14	-0.6809 (8)	-0.2866 (8)	0.3982 (5)	0.121 (3)
C15	-0.5849 (10)	-0.3547 (7)	0.4275 (6)	0.128 (4)
C16	-0.4716 (7)	-0.3209 (6)	0.5006 (6)	0.113 (3)
C17	-0.0775 (4)	0.2925 (3)	0.9491 (3)	0.0652 (16)
C18	-0.1947 (5)	0.3644 (4)	0.8951 (4)	0.0844 (19)
C19	-0.1744 (5)	0.4916 (4)	0.9136 (4)	0.085 (2)
C20	-0.2942 (5)	0.5556 (4)	0.8583 (4)	0.079 (2)
C21	-0.3563 (8)	0.5820 (7)	0.7649 (5)	0.126 (3)
C22	-0.4712 (9)	0.6297 (8)	0.7129 (6)	0.166 (4)
C23	-0.5191 (7)	0.6575 (6)	0.7529 (8)	0.134 (4)
C24	-0.4537 (8)	0.6398 (7)	0.8464 (8)	0.132 (4)
C25	-0.3441 (6)	0.5865 (5)	0.8976 (5)	0.093 (2)
01	0.0138 (8)	0.3343 (4)	0.8276 (5)	0.145 (3)
Br1	0.01170 (5)	0.12751 (4)	0.69968 (4)	0.0869 (2)
H2	-0.13010	0.15940	1.06230	0.0750*
H3	-0.18330	-0.01050	1.09600	0.0900*
H4	-0.22340	-0.17910	1.01360	0.0890*
Н5	-0.21740	-0.18530	0.89000	0.0780*
H7	-0.09830	0.15740	0.81580	0.0700*
H8A	-0.12700	-0.14330	0.79930	0.0850*
H8B	-0.13160	-0.03690	0 74310	0.0850*
H9A	-0.33960	-0.12290	0.71610	0.1020*
H9B	-0.34280	-0.02040	0.65790	0.1020*
H10A	-0.27450	-0.24520	0.65450	0.1260*
H10B	-0.29360	-0.14250	0 59040	0.1260*
H12	-0.54230	-0.08240	0.54700	0.1230*
H13	-0.73240	-0.14220	0.42180	0.1270*
H14	-0.75850	-0.30960	0.34680	0.1270
H15	-0 59700	-0.42500	0.39730	0.1540*
H16	-0.40610	-0.36840	0.52080	0.1360*
H17A	-0.02540	0.32160	0.93590	0.0780*
H17R	-0.03440	0.29890	1 01610	0.0780*
H18A	-0.24030	0.35110	0.82840	0.1010*
H18R	-0.24350	0.33690	0.91190	0.1010*
H10A	-0.12700	0.52050	0.89590	0.1010
H10R	-0.12920	0.52050	0.89590	0.1020
H117B	-0.32100	0.56780	0.73680	0.1020
H21 H22	-0.51500	0.50780	0.73080	0.1510
H23	-0 59660	0.68890	0.71770	0.2000*
H24	-0.48460	0.66450	0.87600	0.1580*
H25	-0.30310	0.57120	0.07000	0.1300*
HW1	-0.042(7)	0.364 (8)	0.705 (1)	0.1110
	0.042(7)	0.304(0)	0.773(4)	0.2170°
11 VV Z	0.071 (0)	0.303 (7)	0.034(/)	0.21/0"

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0533 (19)	0.0500 (15)	0.0617 (19)	-0.0075 (14)	0.0374 (17)	-0.0040 (15)
N2	0.0536 (19)	0.0543 (17)	0.0612 (19)	-0.0002 (14)	0.0396 (17)	-0.0013 (14)
C1	0.038 (2)	0.0523 (19)	0.054 (2)	0.0024 (16)	0.0242 (18)	0.0012 (17)
C2	0.059 (3)	0.070 (2)	0.058 (2)	-0.002 (2)	0.037 (2)	-0.0056 (19)
C3	0.079 (3)	0.094 (3)	0.065 (3)	0.001 (3)	0.051 (3)	0.010(2)
C4	0.079 (3)	0.070 (3)	0.080 (3)	-0.003 (2)	0.053 (3)	0.015 (2)
C5	0.067 (3)	0.052 (2)	0.074 (3)	-0.004 (2)	0.044 (2)	0.001 (2)
C6	0.043 (2)	0.0499 (19)	0.057 (2)	0.0042 (16)	0.0307 (19)	0.0045 (17)
C7	0.054 (2)	0.056 (2)	0.069 (2)	-0.0047 (19)	0.040 (2)	0.004 (2)
C8	0.078 (3)	0.071 (3)	0.074 (3)	-0.004 (2)	0.054 (3)	-0.010 (2)
C9	0.087 (4)	0.080 (3)	0.066 (3)	0.013 (3)	0.037 (3)	-0.004 (2)
C10	0.100 (4)	0.116 (4)	0.101 (4)	0.011 (4)	0.064 (4)	-0.021 (4)
C11	0.071 (3)	0.088 (3)	0.089 (4)	-0.002 (3)	0.039 (3)	-0.016 (3)
C12	0.078 (4)	0.099 (4)	0.089 (4)	0.008 (3)	0.033 (3)	-0.010 (3)
C13	0.075 (4)	0.133 (5)	0.091 (4)	-0.012 (4)	0.042 (4)	0.015 (4)
C14	0.116 (6)	0.141 (6)	0.084 (4)	-0.059 (5)	0.052 (4)	-0.009 (4)
C15	0.158 (8)	0.116 (5)	0.138 (6)	-0.047 (6)	0.106 (7)	-0.041 (5)
C16	0.108 (5)	0.099 (4)	0.152 (6)	-0.006 (4)	0.091 (5)	-0.020 (4)
C17	0.068 (3)	0.050 (2)	0.078 (3)	-0.0074 (19)	0.046 (3)	-0.0058 (19)
C18	0.082 (3)	0.067 (3)	0.101 (4)	-0.002 (2)	0.056 (3)	-0.009(3)
C19	0.093 (4)	0.059 (3)	0.100 (4)	-0.008 (2)	0.059 (3)	-0.006 (2)
C20	0.087 (4)	0.064 (3)	0.090 (4)	0.001 (2)	0.058 (3)	0.006 (2)
C21	0.143 (6)	0.133 (5)	0.111 (5)	0.037 (5)	0.084 (5)	0.026 (4)
C22	0.161 (8)	0.177 (9)	0.109 (6)	0.082 (7)	0.060 (6)	0.045 (5)
C23	0.084 (5)	0.103 (5)	0.174 (8)	0.030 (4)	0.061 (6)	0.019 (5)
C24	0.129 (6)	0.121 (6)	0.174 (8)	0.014 (5)	0.109 (6)	-0.024 (6)
C25	0.104 (4)	0.086 (3)	0.107 (4)	0.002 (3)	0.075 (4)	-0.005 (3)
01	0.248 (6)	0.096 (3)	0.196 (5)	0.007 (4)	0.190 (5)	0.018 (3)
Br1	0.1042 (4)	0.0715 (3)	0.0851 (4)	-0.0021 (3)	0.0595 (3)	0.0094 (2)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

O1—HW1	0.84 (7)	C23—C24	1.355 (16)
O1—HW2	0.84 (11)	C24—C25	1.356 (15)
N1—C1	1.390 (6)	С2—Н2	0.9300
N1—C7	1.323 (6)	С3—Н3	0.9300
N1—C17	1.480 (5)	C4—H4	0.9300
N2—C6	1.399 (6)	С5—Н5	0.9300
N2—C8	1.469 (6)	С7—Н7	0.9300
N2—C7	1.313 (5)	С8—Н8В	0.9700
C1—C6	1.386 (5)	С8—Н8А	0.9700
C1—C2	1.389 (7)	С9—Н9В	0.9700
C2—C3	1.365 (7)	С9—Н9А	0.9700
C3—C4	1.392 (6)	C10—H10A	0.9700
C4—C5	1.373 (8)	C10—H10B	0.9700

C5—C6	1.376 (6)	C12—H12	0.9300
C8—C9	1.539 (8)	С13—Н13	0.9300
C9—C10	1.455 (8)	C14—H14	0.9300
C10—C11	1.511 (10)	С15—Н15	0.9300
C11—C12	1.376 (11)	C16—H16	0.9300
C11—C16	1.382 (9)	C17—H17A	0.9700
C12—C13	1.363 (10)	С17—Н17В	0.9700
C13—C14	1.327 (12)	C18—H18B	0.9700
C14—C15	1.355 (17)	C18—H18A	0.9700
C15—C16	1.350 (15)	С19—Н19В	0.9700
C17—C18	1.535 (9)	С19—Н19А	0.9700
C18—C19	1.483 (7)	C21—H21	0.9300
C19—C20	1.514 (10)	C22—H22	0.9300
$C_{20} = C_{23}$	1.336 (12)	C23—H23	0.9300
$C_{20} = C_{21}$	1.377(9) 1.384(16)	$C_{24} = - \pi_{24}$	0.9300
C22—C23	1.313 (19)	025—1125	0.9300
Br1…O1	3.318 (8)	HW2…Br1 ⁱⁱⁱ	2.96 (8)
Br1…O1 ⁱ	3.383 (5)	HW2…H8B ⁱⁱⁱ	2.5800
Br1…HW1 ⁱ	3.04 (9)	H3…Br1 ^{iv}	3.2000
Br1…H17B ⁱⁱ	3.1100	Н5…С8	3.0200
Br1…H8A ⁱⁱⁱ	3.0900	H5···C20 ^{vi}	3.0900
Br1…H3 ^{iv}	3.2000	Н5…Н9А	2.5900
Br1…HW2 ⁱ	2.96 (8)	H7…O1	2.5000
Br1…H8B	3.2200	H7…H17A	2.5700
Br1…H2 ⁱⁱ	3.1600	H7…H8B	2.4800
Br1…H13 ^v	3.1000	H8A…H10A	2.4100
01…C17	3.236 (13)	H8A…Br1 ⁱ	3.0900
O1…Br1 ⁱⁱⁱ	3.383 (5)	H8A…C5	3.0600
01···C7	3.257 (10)	H8B…H10B	2.5500
O1…Br1	3.318 (8)	H8B…HW2 ⁱ	2.5800
O1…H17A	2.3800	H8B…H7	2.4800
O1…H7	2.5000	H8B…Br1	3.2200
N1…N2	2.175 (5)	Н9А…С5	2.9900
N2…N1	2.175 (5)	H9A…C12	2.9600
C1···C6 ^{IV}	3.509 (7)	Н9А…Н5	2.5900
C2…C8 ^{1V}	3.597 (7)	Н9А…С6	2.9700
C3···C7 ^{iv}	3.568 (9)	H9B···C13 ^v	3.0500
C4···C7 ^{iv}	3.528 (8)	H9B…C12	2.8500
C5···C9	3.574 (7)	H9B…H12	2.3300
C6···C1 ^{iv}	3.509 (7)	H10A…H8A	2.4100
C7…O1	3.257 (10)	H10A…H16	2.3900
C7···C3 ^{iv}	3.568 (9)	H10B····H25 ⁱⁱ	2.4300
C7···C4 ^{iv}	3.528 (8)	H10B···H8B	2.5500
C8···C2 ^{iv}	3.597 (7)	Н12…Н9В	2.3300

C9…C5	3.574 (7)	H12····C25 ^{vii}	3.0700
C17…O1	3.236 (13)	Н12…С9	2.6900
C1…H18B	3.0900	H13····Br1 ^v	3.1000
C2…H17B	2.9500	$H14 \cdots HW1^{v}$	2.3300
С5…Н9А	2.9900	H15…H21 ^v	2.5400
С5…Н8А	3.0600	H16…H10A	2.3900
С6…Н9А	2.9700	H17A…O1	2.3800
C7…H18A	3.0700	H17A…H19A	2.5500
С8…Н5	3.0200	H17A…H7	2.5700
C9…H12	2.6900	H17B…C2	2.9500
C11…H22 ^{vi}	3.0200	H17B…H2	2.5600
C11···H24 ⁱⁱ	2.9000	H17B…Br1 ^x	3.1100
С12…Н9А	2.9600	H18A…C21	2.9400
С12…Н9В	2.8500	H18A…C7	3.0700
C13…H9B ^v	3.0500	H18B…C1	3.0900
C15…H24 ⁱⁱ	3.0600	H19A…H17A	2.5500
C16…H24 ⁱⁱ	2.8100	H19A…H21	2.5100
C17…H2	3.0200	H19B…H25	2.3800
C18····H23 ^{vii}	3.0700	H21…H15 ^v	2.5400
C20····H5 ^{viii}	3.0900	H21…H19A	2.5100
C21…H18A	2.9400	H22···C11 ^{viii}	3.0200
C25…H12 ^{ix}	3.0700	H23····C18 ^{ix}	3.0700
HW1···H14 ^v	2.3300	H24…C11 ^x	2.9000
HW1…Br1 ⁱⁱⁱ	3.04 (9)	H24…C16 ^x	2.8100
H2…Br1 ^x	3.1600	H24…C15 ^x	3.0600
H2…H17B	2.5600	H25…H10B ^x	2.4300
H2…C17	3.0200	H25…H19B	2.3800
HW1—O1—HW2	105 (9)	N2—C8—H8A	109.00
C1—N1—C7	107.9 (3)	С9—С8—Н8А	109.00
C1—N1—C17	126.5 (4)	С9—С8—Н8В	109.00
C7—N1—C17	125.6 (4)	N2—C8—H8B	109.00
C6—N2—C7	108.1 (4)	Н8А—С8—Н8В	108.00
C6—N2—C8	126.3 (4)	С8—С9—Н9В	109.00
C7—N2—C8	125.6 (4)	С10—С9—Н9А	109.00
N1—C1—C6	106.7 (4)	С10—С9—Н9В	109.00
C2—C1—C6	121.8 (4)	Н9А—С9—Н9В	108.00
N1—C1—C2	131.5 (4)	С8—С9—Н9А	109.00
C1—C2—C3	115.9 (4)	С9—С10—Н10А	108.00
C2—C3—C4	122.1 (5)	С9—С10—Н10В	108.00
C3—C4—C5	122.2 (5)	C11-C10-H10B	108.00
C4—C5—C6	115.9 (4)	H10A—C10—H10B	107.00
N2—C6—C1	106.2 (4)	C11-C10-H10A	108.00
C1—C6—C5	122.1 (4)	C11—C12—H12	120.00
N2—C6—C5	131.8 (4)	C13—C12—H12	120.00
N1—C7—N2	111.2 (5)	C12—C13—H13	120.00

N2—C8—C9	111.1 (5)	C14—C13—H13	120.00
C8—C9—C10	112.5 (6)	C15—C14—H14	120.00
C9—C10—C11	117.0 (7)	C13—C14—H14	120.00
C10—C11—C12	123.8 (6)	С16—С15—Н15	120.00
C12—C11—C16	117.7 (7)	С14—С15—Н15	120.00
C10—C11—C16	118.5 (8)	С11—С16—Н16	120.00
C11—C12—C13	120.6 (6)	С15—С16—Н16	120.00
C12—C13—C14	120.2 (9)	N1—C17—H17B	110.00
C13—C14—C15	120.8 (9)	С18—С17—Н17А	110.00
C14—C15—C16	120.2 (8)	N1—C17—H17A	110.00
C11—C16—C15	120.5 (9)	H17A—C17—H17B	108.00
N1-C17-C18	108.6 (4)	С18—С17—Н17В	110.00
C17—C18—C19	113.8 (5)	C17—C18—H18A	109.00
C18—C19—C20	110.4 (6)	C17—C18—H18B	109.00
C19—C20—C21	120.7 (8)	C19—C18—H18B	109.00
C19—C20—C25	121.4 (6)	H18A—C18—H18B	108.00
C21—C20—C25	117.9 (8)	C19—C18—H18A	109.00
C20-C21-C22	120.0 (10)	C18—C19—H19B	110.00
C21—C22—C23	120.8 (9)	С20—С19—Н19А	110.00
C22—C23—C24	118.9 (12)	С20—С19—Н19В	110.00
C23—C24—C25	121.2 (12)	H19A—C19—H19B	108.00
C20—C25—C24	120.9 (8)	C18—C19—H19A	110.00
C3—C2—H2	122.00	C22—C21—H21	120.00
С1—С2—Н2	122.00	C20—C21—H21	120.00
С2—С3—Н3	119.00	C21—C22—H22	120.00
С4—С3—Н3	119.00	С23—С22—Н22	120.00
С5—С4—Н4	119.00	С24—С23—Н23	120.00
С3—С4—Н4	119.00	С22—С23—Н23	121.00
С4—С5—Н5	122.00	C23—C24—H24	119.00
С6—С5—Н5	122.00	C25—C24—H24	119.00
N2—C7—H7	124.00	С20—С25—Н25	119.00
N1—C7—H7	124.00	С24—С25—Н25	120.00
C7—N1—C1—C2	178.3 (6)	C4—C5—C6—C1	-0.6 (8)
C17—N1—C1—C2	-3.8 (8)	N2—C8—C9—C10	-177.5 (5)
C7—N1—C1—C6	0.2 (5)	C8—C9—C10—C11	173.4 (5)
C17—N1—C1—C6	178.1 (4)	C9—C10—C11—C12	24.9 (9)
C1—N1—C7—N2	0.3 (6)	C9—C10—C11—C16	-157.8 (7)
C17—N1—C7—N2	-177.7 (4)	C10-C11-C12-C13	174.1 (7)
C1-N1-C17-C18	-85.3 (5)	C12-C11-C16-C15	3.1 (13)
C7—N1—C17—C18	92.3 (7)	C16-C11-C12-C13	-3.2 (11)
C6—N2—C8—C9	72.9 (5)	C10-C11-C16-C15	-174.4 (9)
C7—N2—C8—C9	-107.4 (6)	C11-C12-C13-C14	1.0 (12)
C7—N2—C6—C5	-177.9 (6)	C12—C13—C14—C15	1.4 (14)
C8—N2—C6—C5	1.8 (9)	C13—C14—C15—C16	-1.5 (17)
C7—N2—C6—C1	0.6 (5)	C14—C15—C16—C11	-0.8 (16)
C8—N2—C6—C1	-179.7 (4)	N1—C17—C18—C19	-175.7 (5)
C6—N2—C7—N1	-0.6 (6)	C17—C18—C19—C20	-179.6 (5)
C8—N2—C7—N1	179.7 (4)	C18—C19—C20—C21	-81.0 (8)
N1—C1—C2—C3	-177.6 (5)	C18—C19—C20—C25	97.9 (7)

C2—C1—C6—C5	-0.1 (8)	C19—C20—C21—C22	173.4 (7)
N1-C1-C6-C5	178.3 (5)	C25—C20—C21—C22	-5.5 (11)
C6—C1—C2—C3	0.4 (8)	C19—C20—C25—C24	-177.4 (7)
C2-C1-C6-N2	-178.8 (5)	C21—C20—C25—C24	1.5 (10)
N1—C1—C6—N2	-0.5 (5)	C20—C21—C22—C23	4.6 (14)
C1—C2—C3—C4	0.1 (8)	C21—C22—C23—C24	0.6 (14)
C2—C3—C4—C5	-0.9 (9)	C22—C23—C24—C25	-4.8 (14)
C3—C4—C5—C6	1.1 (8)	C23—C24—C25—C20	3.8 (13)
C4—C5—C6—N2	177.8 (5)		

Symmetry codes: (i) -*x*, *y*-1/2, -*z*+3/2; (ii) *x*, -*y*+1/2, *z*-1/2; (iii) -*x*, *y*+1/2, -*z*+3/2; (iv) -*x*, -*y*, -*z*+2; (v) -*x*-1, -*y*, -*z*+1; (vi) *x*, *y*-1, *z*; (vii) -*x*-1, *y*-1/2, -*z*+3/2; (viii) *x*, *y*+1, *z*; (ix) -*x*-1, *y*+1/2, -*z*+3/2; (x) *x*, -*y*+1/2, *z*+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
С7—Н7…О1	0.93	2.50	3.257 (10)	139
C17—H17A…O1	0.97	2.38	3.236 (13)	148
C24—H24···Cg1 ^x	0.93	2.84	3.771 (14)	176
Symmetry codes: (x) x , $-y+1/2$, $z+1/2$.				

